
Journal of Computational Physics151,264–282 (1999)

Article ID jcph.1999.6199, available online at http://www.idealibrary.com on

OOMPAA—Object-Oriented Model for Probing
Assemblages of Atoms

Gary A. Huber and J. Andrew McCammon

Department of Chemistry and Biochemistry, University of California, San Diego,
La Jolla, California 92093-0365

E-mail: ghuber@chemcca10.ucsd.edu, Fax: 619-534-7042

Received July 7, 1998; revised December 24, 1998

An object-oriented library is presented for building molecular-modeling software.
This library allows the user to treat individual components of molecules as C++
objects, and provides various templated lists and vector classes for manipulating
these objects. Other utilities, such as minimizers and integrators, are continually being
added to the body of code. Performance is a key consideration; the performance of
simple benchmarks is comparable to that of hand-coded Fortran.c© 1999 Academic Press

Key Words:object-oriented; molecular mechanics.

INTRODUCTION

Molecular simulation software is not simple, and most of it is written with computational
efficiency in mind, rather than elegance of expression. This means that the source code is
written in Fortran or C, with very strong coupling among the different components of the
program. This is fine if the software will not change or be combined with other software;
a computer program can then be treated as a monolithic black box. However, computer
programs grow and change, and programs that are nicely written in Fortran tend to degrade
over the years as generations of scientists and programmers add their own ideas. In addition,
adding new functionality to such programs is a very laborious and tedious undertaking; thus,
many promising ideas in the literature never make it into widely used code. Finally, two
different software packages from two different research groups or companies might have
different functions that one would want to combine; this is almost an impossible undertaking
for many cases. Even when workers succeed in altering or combining such code, the results
cannot always be trusted because of the introduction of bugs. This problem is not unique
to the world of molecular modeling; it is known as thesoftware crisis[4].

A promising way out of the software crisis in molecular modeling lies inobject-oriented
programming. Traditional procedural languages like Fortran are built around the subrou-
tine, and the data are conceptually separate from the subroutine. This works well from an
efficiency viewpoint, because that is how the computer sees the world, but it is not how

264

0021-9991/99 $30.00
Copyright c© 1999 by Academic Press
All rights of reproduction in any form reserved.

OOMPAA 265

humans see the world. Object-oriented languages, on the other hand, group related pieces
of data together with the functions that act upon them; these are the objects. This results
in more understandable code and a decoupling of unrelated code that allows the program-
mer to change one part of the program without affecting any other parts. The programmer
can also create new types of objects from existing objects without changing the original
object. In the past few years, interest has grown in devising heterogenous models for large
molecules; such hybrids include combinations of quantum-mechanical [5, 10, 1, 2] methods
and continuum descriptions of matter [12, 22, 9, 16] with molecular mechanics. Also, in
order to improve configuration-space sampling and to make use of parallel computers, it is
often desirable to use multiple copies of such models [17, 18, 8, 7]. Finally, for very large
systems, it might be necessary to distribute just one copy over many processors [6]. Simu-
lations combining several of the above features may require code of extreme complexity if
written in C or Fortran.

Until recently, the main issue has been performance. C++ code did not compare in
speed to equivalent Fortran code. However, this has changed in the past few years with
C++ compilers that are now available. Numerically intensive C++ code can run as fast as
Fortran code, while keeping the elegance of expression afforded by objects. In some cases,
this results in more efficient algorithms, because related pieces of data are more likely to
lie near each other in memory [27]. There are other elegantly formulated object-oriented
languages such as Java and Eiffel, but none of them rival C++ in performance. Thus, it
appears that C++ holds the future for scientific programming. Indeed, there already exists
at least one widely used molecular simulation package that is written in C++, NAMD [3].

This situation is the inspiration for OOMPAA (Object-Oriented Model for Probing As-
semblages of Atoms), which is a collection of C++ classes for constructing molecular-
modeling software. OOMPAA has two major divisions: thecore and theadditions. The
core includes the most basic objects that are used to describe molecules and is expected
to remain very stable. The additions to OOMPAA include include C++ classes that act as
machines to manipulate the data structures in the core; this section is constantly growing.
Most of this article describes the core. OOMPAA strives to be very general. While it is
sure to be useful in studying biomolecules, there is no obstacle to using it on other types
of systems, and nothing in the core is unique to biomolecules. OOMPAA tries to insulate
the user from the complexities of C++ (of which there are many). The user should only
need to know what classes, objects, and templates are, and to understand the concept of
pointers. Included are several scripts that automatically generate C++ code for classes with
desired properties. OOMPAA is written with the assumption that the user has available a
state-of-the-art optimizing C++ compiler that is nearly compliant with the draft ANSI/ISO
standard. Assuming good compilers, OOMPAA is meant to be portable; it makes use of other
portable class libraries, and all scripts are written in the language Python [25]. OOMPAA is
free, users are encouraged to add classes to it or make their own code freely available, and
OOMPAA makes use of other free C++ class libraries, such as VTK [21] for visualization.

OBJECTS

In computer science, anobject is a collection of data that has functions defined on it.
Often, an object in the computer will correspond to an object in the real world, with the data
representing relevant information about the object’s state and the functions representing
possible actions taken by the object. In C++, the type of an object is known as itsclass.

266 HUBER AND MCCAMMON

All objects belonging to the same class have the same functions and the same types of
data, but each object has its own copy of the data. First, the programmer creates a class,
which describes the data and functions, and later in the computer program, objects of that
particular class are created, manipulated, and destroyed. The closest thing to classes in the
C language isstructures, which are collections of data; Fortran 90 hasmodules, while
Fortran 77 has nothing that resembles classes.

In most object-oriented languages, one can definepointersor referencesto objects. A
pointer or a reference is merely a number that contains the starting location of an object’s
data in memory. C++ has both pointersandreferences; they are essentially the same thing but
with slightly different syntax. Throughout this paper, the termpointerwill refer generically
to both C++ pointers and references unless the distinction must be made clear. Pointers
are useful because one object canrefer to another object or be associated with it, without
needing to copy any data. When a pointer is created in C++, it must always point to objects
of the same class, with one exception, given below.

Objects are very versatile. Objects can contain other objects or pointers to other objects,
and functions can have objects or pointers to objects as arguments and return values. New
classes can be created from existing classes by adding new functions and data; the old class
is not changed, but the new class can be used wherever the old class is used. This is known
as inheritance. Typically, the old class is known as theparent, or thebase class, and the
new class is known as thechild. A pointer that points to an object of a particular class can
also point to an object belonging to one of its child classes.

Objects also facilitatedata-hiding, in which the internal workings of the object are hidden
away from the outside world. It is possible to restrict access of data members and functions; if
a data member is declared to beprivate(as opposed topublic), only member functions of that
particular class can gain direct access to those data. Indeed, it is considered poor program-
ming practice for any data to be public; only functions should be public, as will be seen below.

In OOMPAA, perhaps the most basic class is theParticle. The OOMPAA Particle
has very few features; the only data member is an unsigned long integer, the particle’sid
that can be used to represent the chemical type of the particle. For example, one value
of the id might be used to represent an aliphatic carbon atom, while another value might
represent an alcohol oxygen atom. The core of OOMPAA places no restrictions and makes
no assumptions regarding the use of the id.

By itself, the bareParticle class is not very useful, but the user can create new particle-
like classes with useful features by inheriting from the basicParticle class. Suppose that
the user wants to perform a Monte Carlo simulation, in which particle positions are varied in a
stochastic manner. Clearly, the particle needs data to describe its position. So, the user creates
a class, calledMC Particle, which contains another object representing a 3-dimensional
vector. The data are accessed indirectly throughaccessor functions. The following C++
code gives an outline of this new class (function implementations are not shown):

class MC Particle: public Particle{
public:

void Set position(const Vector3< double> x);

Vector3< double> position() const;

void Add to position(const Vector3< double> dx);

private:

Vector3< double> position;

};

OOMPAA 267

FIG. 1. Possible memory layout of a particle used in MD simulations.

The class describing the vector of 3 double-precision floating-point numbers is
Vector3< double>; it hastemplatesyntax, which will be described below. The first func-
tion sets the position to x, the second function returns the particle’s position, and the third
function increments the position by dx. Fortunately, the user never needs to write such
code; OOMPAA provides a script,Create particle, to automatically generate C++ code
for child classes having desired features. The user only needs to tellCreate particle

that the new particle class must have a position described by a vector of the desired type,
and all of the new C++ code is generated. (This is in accordance with the philosophy of
shielding the user from the complexities of the C++ language.) Of course, the user can also
set and retrieve theMC Particle object’s id which is inherited from the baseParticle
class.

Next, suppose that the user needs to perform a molecular dynamics simulation on the
same system of particles. Now, a new particle class,MD Particle, is needed, which has
mass, velocity, and force, in addition to id and position. Using theCreate particle

program, the user can specify that the velocity and force on the particle be treated like
the position above, with 3-dimensional vectors storing the data. However, there are several
different ways in which one might handle the mass. If all particles have the same mass, then
the functionmass() that returns the object’s mass can simply return the same value for all
objects. If memory is not in short supply, each object can carry around its own floating-point
number representing its mass. Finally, the mass of the object can be computed by using
the object’s id number to look up the mass in a table. No matter how the retrieval of the
mass is implemented, it is desirable that the interface between theMD Particle object
and the outside world, namely, the functionmass(), not change. It is possible that the user
might want to change the way in which the mass is implemented; if the interface stays
the same, then all code that relies on it will still work. This would not be possible if the
data representing the mass could be manipulated directly. TheCreate particle script
can generate code for all three possible implementations. For the case where the mass is
stored explicitly, the layout of aMD Particle object is illustrated in Fig. 1. The reader
should note that neither of these classes derived fromParticle is included in the core of
OOMPAA; the authors do not presume to know which type ofMD Particle is most useful
for the user.

TEMPLATES

A very useful code-reuse device in C++ is the technique oftemplates. Although templates
have a very broad domain of usefulness, in the core of OOMPAA they are used mainly for
the creation of objects that contain either other objects or pointers to other objects. Perhaps

268 HUBER AND MCCAMMON

the most simple example is that of the classVector3< double> above, which contains
three double-precision floating-point numbers. It is also possible to have a 3-dimensional
vector of integers by creating objects of the classVector< int>. Even though these are two
different classes, they have the same code, which is written once in a very generic manner
to accommodate all reasonable contained data types. In addition to templated classes, it
is possible to have templated functions which can have different types of arguments and
return values.

LISTS

In OOMPAA, one does not usually deal with individual particles; rather, one deals with
lists of particles. Thus, OOMPAA provides a template classList<>, which represents
variable-length lists of objects. So, if the user wants to create a list with 1000MC Particle

objects described above, the code would be:

List< MC Particle> particles(1000);

When this code is executed, a list of 1000 new particles is created; it is then the user’s role
to put meaningful data into the particles themselves. One can access the member particles
as if the list were a C++ array:

Vector3< double> x;

x = particles[100].position();

Here, the position of the 100th particle is placed into the vectorx. (The “dot” notation used
in the second line is used to denote the member functionposition() of a particular object
position[100].) Unlike simple C++ arrays, the OOMPAAList has member functions
that can copy other lists, add and delete members, apply a given function to the members,
create sub-lists, and carry out set operations such as unions and intersections. Templated
lists are not a new idea; the C++ Standard Template Library [19] uses the same idea (in fact,
the Oompaa list makes use of the STLvector). An important limitation is the fact that this
list can contain onlyMC Particle objects; this restriction is eased in the next section.

POINTER LISTS

The templated classList is actually two templated classes in one; it is possible to create
lists that containpointersto objects rather than the objects themselves. The type of list in
the illustration above is called abody list, as opposed to apointer list, because it contains
the bodies of the objects. Body lists are obviously very important because they contain all
of the information, but pointer lists are very flexible and useful for manipulating groups of
atoms and for making new lists.

As an illustration, consider the following:

List< MC Particle> mc particles(5);

List< MD Particle> md particles(5);

List< MC Particle ∗> all particles = mc particles + md particles;

Two body lists, one of fiveMC Particle objects and one of fiveMD Particle objects,
are created, and then a pointer list is created that represents the union of the two body lists.
The pointer list is distinguished by the∗ inside the template brackets. When the pointer

OOMPAA 269

FIG. 2. Pointer list example.

list is created, no changes take place inside either body list, but the pointer list contains 10
pointers which point to each member of the two body lists (Fig. 2). Also, because the class
MD Particle is a child class of classMC Particle, it is possible for a list of pointers to
the parent class to contain pointers to the child class. This flexibility can be very useful; for
example, if the user wants to carry out Monte Carlo steps on theMD Particle objects as
well as theMC Particle objects, the pointer list can be passed to the function or object
that performs such a computation. Moreover, the user can create an entirely new body list
from this pointer list:

List< MC Particle> all particle bodies = all particles.body list();

Now, the listall particle bodies contains 10 newMC Particle objects that are
copies of the original objects. The five objects that correspond to the originalMD Particle

objects areslicedfrom the original, with the mass, velocity, and force data excluded.
Pointer lists can be useful for selecting out groups of particles for special treatment. As

an illustration, suppose that the atoms in the active site of an enzyme merit some special
treatment apart from the rest of the atoms. Given a function that returnstrue or false if
an atom is or is not considered to be in the active site, this is easily done:

bool in active site(const MC Particle &); // returns true if in

active site

.

.

List< MD Particle> all atoms;

// now initialize list;

.

.

List< MD Particle *> active site atoms = all atoms.sub list(in

active site);

// select atoms that are not in active site

List< MD Particle *> other atoms = all atoms - active site atoms;

It should be noted that the functionin active site takes a reference to theparentclass
as an argument, assuming that only the position is necessary to determine membership in
the active site. Still, a list of the objects belonging to the child class can make use of this

270 HUBER AND MCCAMMON

function, opening up the possibility of reusing Monte Carlo code in molecular dynamics
code. Indeed, pointer lists contain a larger set of functions than do the body lists, because of
their flexibility. Although rearranging lists is done infrequently enough in typical simulations
that it is unlikely to become a bottleneck, care has been taken to ensure that no list operation’s
execution time has a scaling worse thanN log N, whereN is the number of items.

The= operator, when applied toList classes in OOMPAA, follows the convention of
copy-by-reference. This is the default behavior of objects in several other object-oriented
languages such as Java and Python, but not in C++. For example, in the code

List< MD Particle> list1(100), list2(200);

list2 = list1;

what happens is thatlist2 andlist1 now refer to the same underlying object containing
100 particles, while the 200 particles in the originallist2 are deleted. Each underlying list
object keeps track of the number of names referring to it, and when the last name is deleted
or assigned to something else, the underlying object deletes itself. This differs completely
from the container objects in the Standard Template Library, in which the objects on the
right side of the= operator are copied to the container on the left. The copy-by-reference
convention increases the convenience of complicated list manipulations.

OOMPAA includes convenient C-style macros for looping through members of lists and
pairs of members. For example:

List< MD Particle> list(10000);

...

FOR ITEMS IN LIST(MD Particle, list, atom)

Do something(atom);

END ITEMS IN LIST;

In the above code, the functionDo something is applied to each member oflist. Here
is a more complex example that loops through all pairs of particles in a list to compute the
Coulombic energy of interaction:

List< MD Charged Particle> list(10000);

// initialize atoms

...

double energy = 0.0;

FOR PAIRS IN LIST OUTER(MD Charged Particle, list, atom1)

double q1 = atom1.charge();

FOR PAIRS IN LIST INNER(MD Charged Particle, list, atom2)

double q2 = atom2.charge();

Vector3< double> r = atom1.position() - atom2.position();

double R = norm(r);

energy += q1*q2/R;

END PAIRS IN LIST;

Good C++ compilers can optimize the above code to get performance that is compara-
ble to equivalent Fortran code. The macros work with both pointer lists and body lists. In
some cases, perhaps depending on personal programming style, it might be desirable to
useiterators [19] instead of macros to loop through a sequence of objects. Iterators are
more flexible, but macros might be more readable to those coming from a Fortran-based

OOMPAA 271

background. Future versions of OOMPAA will include iterators corresponding to the loop-
ing macros.

CHEMICAL STRUCTURES

Another kind of templated container, thechemical structure, contains a fixed, small
number of pointers to other objects. It also contains an id integer just like the one in
Particle objects. In OOMPAA, the name of the class isStructure. It hastwo template
parameters: the first denotes the type of object pointed to, and the second is aninteger
that denotes the number of pointers. Integers can be template parameters; this fixes the
number of pointers during compilation, allowing more efficient code. One very important
application of chemical structures is the representation of bonds between atoms; the id
number can denote the type of bond, such as double carbon–carbon or single carbon–
nitrogen. Likewise, chemical structures with three pointers can represent bond angles, and
quartets of pointers can represent torsion angles. One disadvantage of templates is that the
names can become unwieldy; in such cases, it can be useful to usetypedef to condense
the names:

typedef Structure< MD Particle, 2> Bond;

List< Bond> bonds;

List< Bond *> active site bonds;

As seen above,Structure objects can be stored in body lists and referenced by pointer
lists. When either type of list contains a chemical structure, additional list functions are
available to selectStructure objects with certain properties or to create lists ofParticle

objects referenced by theStructure objects.

GROUPS

A third kind of templated container is thegroup. A group is like a chemical structure in
that it refers to other objects rather than containing them, it has a fixed length, and it has an
id number. Unlike a chemical structure, it does not contain an individual pointer for each
referenced object; instead, it contains one pointer that points to an object or a pointer in a
List object and an integer than denotes the number of objects referenced in the list beyond
the first one referenced (Fig. 3). Like the classList, groups come in two flavors. Abody
grouppoints directly to objects in a body list, and apointer grouppoints to other pointers
in a pointer list, thus indirectly referencing the objects. Each object referenced by a group
is given a unique name and is accessed by appropriate functions. Because groups are more
complex than chemical structures, the scriptCreate group is used to generate the C++
code for a group class; it uses an input file that gives the names for the referenced objects.
Group classes do not have an integer template parameter, it is unnecessary because the C++
code is generated by the script. Body groups and pointer groups have similar behavior, but
with pointer groups, it is possible to “delete” object references by setting the pointer in
the corresponding pointer list to a null value. Finally, one can store and reference groups
using theList class; as with chemical structures, additional functions become available
for manipulating groups.

One use for groups is to represent amino acids. A base class,Amino Acid, contains
references to the atoms that all 20 of the usual amino acids have in common. The group

272 HUBER AND MCCAMMON

FIG. 3. Memory layout of a group and its data.

classes representing the actual amino acids inherit fromAmino Acid, adding references to
their particular atoms. Similar groups can be generated to reference the bonds, bond angles,
and torsion angles of the amino acids. The atoms of a protein molecule can be represented
as shown in Fig. 4. All of the atoms are contained in one body list, and all of the amino
acid group objects are contained in twenty different body lists. Each of the amino acid body
lists contains groups of a specific type; for example, all alanine groups are contained in one
body list. Finally, a pointer list of plainAmino Acid groups points to all of the amino acid
groups, in the same order in which they appear in the protein. Using this scheme, one could,
with a few lines of code, create a list of atoms belonging to all amino acid residues whose

FIG. 4. Possible organization of protein molecule data.

OOMPAA 273

α carbons lie inside the active site:

bool in active site(const MC Particle &); // returns true if in

active site

typedef List< Amino Acid< MD Particle> *> AA List;

AA List residues;

// set up residues

...

List< MD Particle *> alpha carbons =

residues.selected members(Amino Acid::Ca);

List< MD Particle *> alpha carbons in site =

alpha carbons.sub list(in active site);

AA List residues in site =

residues.groups with members(alpha carbons in site);

List< MD Particle *> atoms near site = residues in site.all members();

VECTORS

In just about every scientific computing application, it is desirable to treat large collections
of numbers as vectors, and to use these vectors in mathematical expressions within the code.
One of the main impediments to the use of C++ in scientific computing has been the absence
of standard vectors and matrices. When someone creates a class library for a particular area
of computation, very often the author includes his own vector and matrix classes. It is true
that the C++ Standard Template Library has avector class, but this class does not have
many facilities for numerical computing. Thus, this can lead to serious incompatibilities
between different class libraries. Another obstacle is related to the operator overloading of
C++. Consider the following example:

Vector< double> a(10000), b(10000), c(10000);

// initialize vectors

....

c = a + b;

In most obvious schemes, the+ operator isoverloaded, or redefined, to return aVector
object, and the= operator is overloaded to accept aVector object. Then, a temporary
vector is created which holds the sum ofa andb, and it then is copied toc. This greatly
inhibits performance, especially on vector supercomputers. However, the recently developed
technique ofexpression templates[26], together with good optimizing compilers [20], has
completely changed this situation. Instead of returning a whole vector, the+ operator
returns a small, temporary object, called anexpression object, that points to the vectorsa
andb. The= operator accepts this small object, hands it back an integer index, and the small
expression object computes the sum of the elements ofa andb denoted by the index. The
true performance boost is realized when the compiler is sophisticated enough to eliminate
the small object altogether and generate code that is equivalent to the following C code:

double a[10000], b[10000], c[10000];

int i;
....

for (i=0; i<10000; i++)

a[i] = b[i] + c[i];

274 HUBER AND MCCAMMON

Furthermore, the expression template technique works on arbitrarily complicated
expressions.

This technique, in addition to many others, is a part of the Blitz++ array class library of
Veldhuizen [28]. The Blitz++ arrays comprise the primary vectors of OOMPAA. Blitz++
distinguishes large, variable-length arrays that are allocated on the heap from small, fixed-
length arrays that are allocated on the stack. At the time of this writing, the small vector
classes of Blitz++ are still under construction, so OOMPAA has included its own templated
Vector3 class, seen in several examples above. Although it is somewhat risky to tie a class
library to one vector implementation, it is the authors’ judgment that the Blitz++ arrays will
eventually become the standard for C++ scientific computing. OOMPAA does not use the
bare Blitz++ arrays, but it uses its own templatedVector class that inherits from the Blitz++
array and adds more features to allow interaction withgeneral vectors, discussed below.

GENERAL VECTORS

Often it is convenient to represent certain components of the items in a list collectively
as one vector. For example, one might want to treat the positions of the atoms in a list
as one vector, the velocities as another, and the accelerations as a third. This is done by
theGeneral Vector class, which takes two template parameters. The first parameter is
a place-holder class that selects out the appropriate accessor function of the item, and the
second parameter is the type of list. TheGeneral Vector class acts as a “wrapper” around
the list, causing it to appear as a vector to the rest of the code. Assume that the class
MD Particle has a functionacceleration() that computes the acceleration from the
mass and the force and returns aVector3< double> object. Then, the implementation of
a velocity-Verlet algorithm on a list of particles might look like this:

List< MD Particle> atoms(10000);

General Vector< v::position, List< MD Particle> > x(atoms);

General Vector< v::velocity, List< MD Particle> > v(atoms);

General Vector< v::acceleration, List< MD Particle> > a(atoms);

...

v += a*0.5*dt;

x += v*dt;

Compute forces();

v += a*0.5*dt;

This code can be optimized by the compiler to be equivalent to hand-coded C or Fortran.
The place-holder classes reside in the namespacev to avoid name clashes, and they can be
automatically generated by the scriptCreate general vector. The expression template
method is implemented for general vectors, and they can interact fully with OOMPAA
Vector objects. Another templated class, theComposite Vector, allows one to stack two
or more differentVector or General Vector classes end-to-end to make a new vector
class.

PARAMETERS

OOMPAA’s treatment of parameters, such as those found in molecular mechanics com-
putations, represents an attempt to satisfy three requirements. First, the parameters must be
rapidly accessible to the computer. Second, it should be very easy for the user to change

OOMPAA 275

parameters and introduce new parameters. Third, the presence of the parameters should be
clear within the code itself; a hasty glance at the code should suffice to reveal the para-
meters.

In OOMPAA, parameters are stored in a templatedParameter List object. This class is
templated with respect to the C++ type of of the parameter; one can have not only parameters
that are floating point numbers, but also vectors, tensors, integers, etc. TheParameter List

acts like a large array, where the parameter values are indexed by the type of parameter
(e.g., charge, mass, bond-stretch spring constant) and the type of chemical structure (e.g.,
aliphatic carbon, alcohol oxygen, carbon–carbon double bond), as given by its id number.
Many parameters depend only on one object (like charge). Others depend on two objects
(like the Lennard-Jones interaction parameters); in this case, the parameter value would be
indexed by the parameter type and both of the atom types.

When aParameter List object is created, it is initially empty. TheParameter List

is informed of a parameter type by giving it a string representing a name for the parameter.
TheParameter List then assigns a unique unsigned integer to the parameter; then, this
integer can be obtained from theParameter List and used to access parameter values.
A chemical object type is placed into theParameter List in the same manner. When a
name (in the form of a string) is given to theParameter List, it registers a unique index.
The Parameter List class provides a function for reading parameters and their names
directly from a file with a very simple format.

In order to enter the parameter value of interest, theParameter List object is given
two integers and a parameter value. One integer represents the type of parameter, and
the other represents the type of chemical object. The parameter value is entered into the
Parameter List object under those two indices. In a similar manner, the parameter value
can be retrieved during a simulation by giving the theParameter List object the same two
integers. (For the case where the parameter depends on two chemical objects, the parameter
list would be given three integers.) During a simulation, the parameter name string and the
object name string should not be used to retrieve the parameter. Looking up entries in a
table using strings takes much longer than using an integer index. The string is merely a
convenience in the event that theParameter List object is used in several subroutines.
At the beginning of each subroutine, the relevant integer indices can be extracted using an
easily remembered name.

An illustration of this process is shown in Fig. 5. The chemical object of interest is a single
bond between two ordinary carbons, and the parameter of interest is the spring constant
for the bond stretching motion. In Step 1, the bond type is entered under the name “C–C
Single Bond,” and the resulting index is placed into the variablei CCS. In Step 2, all of
the carbon–carbon single bonds in the simulation have their id’s set toi CCS. In Step 3,
the parameter type is entered under the nameBond Stretch and the resulting index is
placed intoi BS. In Step 4, the value of the parameter is stored, using the two indices from
above. Finally, during the simulation, in Step 5, the parameter value is retrieved using the
two indices. Chances are that Step 5 occurs within a loop that goes through all bonds; the
index representing the bond type is extracted from theid() function of each bond.

typedef Structure< Atom, 2> Bond;

List< Bond> bonds;

// initialize bonds

Parameter List< double> bond parameters;

// Step 1

276 HUBER AND MCCAMMON

FIG. 5. Illustration of parameter list use.

size t i CCS = bond parameters.Add type ("C-C Single Bond");

// Step 2

// Figure out which bonds are C-C and set their id’s to i CCS

...

// Step 3

size t i BS = bond parameters.Add parameter("Bond Stretch");

// Step 4

double C C single bond stretch = ...;

bond parameters.Set parameter(C C single bond stretch, i BS, i CCS);

// Repeat above steps for other parameters and bond types

...

// Step 5

FOR ITEMS IN LIST(Bond< Atom>, single bonds, bond)

// retrieve bond-stretch parameter

real k bond = bond parameters(i BS, bond.id());

...

END ITEMS IN LIST;

// or it can be done this way; which might be more efficient.

// access a vector containing all bond-stretch parameters

const std::vector< real>& bond stretch parameters =

bond parameters.parameter vector(i BS);

FOR ITEMS IN LIST(Bond< Atom>, single bonds, bond)

real k bond = bond stretch parameters[bond.id()];

...

END ITEMS IN LIST;

OOMPAA 277

As can be seen, the parameters are closely coupled to the id numbers of the particles,
chemical structures, and groups. For this reason, objects that read in Protein Database Files
in preparation of a molecular-mechanical protein simulation will also need to read in the
appropriate parameter files at the same time.

Ensemble Lists

In many applications, one might simultaneously perform simulations on several copies of
the physical system of interest. These applications might range from simple cases of several
one-copy simulations being run at the same time, to simulations where the different copies
actually physically interact with each other. Examples of potential applications include
the weighted-ensemble methods [17, 18] and the reaction pathway methods [8, 7]. These
copies can be contained in an object of the templated classEnsemble List. At the time
of this writing, OOMPAA has only a serial implementation of theEnsemble List, but
future plans include a parallel version, built on top of the standard MPI (Message-Passing
Interface) [23]. Even though theEnsemble List is a container of objects, in much the same
way as the OOMPAAList and the Standard Template Libraryvector, it has additional
functions that collectively manipulate its members. Its syntax is designed so that when the
parallel version is available, it will be possible to port existing code to parallel computers
with minimal change. The parallel version uses the technique ofdata parallelism[24], in
which the same commands are issued on each processor, but with different local data.

As a simple example, consider an ensemble list of 100 user-definedMolecule objects.
The molecules are created, issued a command, and queried about their status, and some are
deleted.

size t n = 100;

Ensemble List< Molecule> molecules(n);

// Commands to the parallel version to set the MPI Communicator,

// customize placement of molecule objects on different processors

...

FOR ITEMS IN ENSEMBLE(Molecule, molecules, molecule, i)

molecule.Move();

END ITEMS IN ENSEMBLE;

Vector< double> energy(n);

GET ENSEMBLE INFO(Molecule, molecules, molecule, i, energy)

energy[i] = molecule.energy();

END ENSEMBLE INFO

double average energy = energy.sum()/n;

FOR ITEMS IN ENSEMBLE(Molecule, molecules, molecule, i)

if (energy[i] > 3.0*average energy)

molecules.Remove item(i);

END ITEMS IN ENSEMBLE;

In the parallel version, theMolecule objects are apportioned among the different
processors, but the vectorenergy is duplicated on each processor. InsideFOR ITEMS IN

ENSEMBLE loops, each processor applies theMove command only to its own objects, or
deletes only its own objects. After the deletions occur, theMoleculeobjects are redistributed
across the processors if the loads become too unbalanced. Inside theGET ENSEMBLE INFO

278 HUBER AND MCCAMMON

loop, each processor places the values from itsMoleculeobjects into its copy of theenergy
array, and then exchanges its array contents with all of the other arrays on the other pro-
cessors before the loop is exited. Some of the computation is duplicated across processors,
but the assumption is made that the member functions of theMolecule objects take most
of the processor time.

OTHER CORE FEATURES

OOMPAA handles physical units in a unified manner. First, it assumesfundamental
unitsof angstroms for length, atomic mass units for mass, picoseconds for time, Kelvin for
temperature, and the unit charge for electrical charge. Next, it provides aUnit class for
building new physical units and two functions for converting to and from the fundamental
units. Finally, it provides many built-in physical units and physical constants.

OOMPAA deals with the problem of passing functions as arguments to other functions
in a consistent manner. In C++, there are three basic types of functions: unbound functions,
such as those in C and Fortran, non-constant member functions of a class, and constant
member functions of a class. Even if templates are used, it is not possible to pass, as an
argument, a function of one kind to a function that expects a function of another kind. Thus,
the programmer is faced with the prospect of writing three versions of the same function.
Based on software by Hickey [13], OOMPAA includes templated classes that “wrap” the
different types of function information into the same type of object, thus allowing the same
code to serve for all three cases. Although the casual user who passes functions to functions
does not need to be aware of this method, it removes a major obstacle to code development
within OOMPAA.

ADDITIONS

In scientific modeling, there are two general uses for objects. The first use is to represent
the objects being simulated; this is the main emphasis of OOMPAA’s core. The second use
of objects is that of “machines,” or tools for carrying out a task. Several of these tools are
already included in the additions to OOMPAA, and many more will be added in the future.
Already included are functions for computing bond and torsion angles and their derivatives
as functions of three and four positions, respectively. There are multivariate minimizer
classes which can be applied to any function and generalized vector. There are different
types of numerical integrators, including multiple-time step integrators, which can take any
set of generalized vectors as inputs. OOMPAA has acell list, which groups particles into
cubic cells to facilitate the computation of pair-wise short-ranged forces. OOMPAA has
classes for performing weighted-ensemble dynamics and annealing. There are classes for
viewing lists of particles that make use of classes from the Visualization Toolkit (VTK),
which itself is object-oriented, portable, and free.

OOMPAA also has several classes for performing continuum electrostatic calculations,
which has been used successfully for eliminating atomic degrees of freedom in simulations
of proteins. Included is a grid class for storing the input and results of finite-difference
computations, electrostatic solver classes that sit on top of multigrid code written in C by
Holst [15, 14], and classes that wrap lists of particles to make them appear to be solid bodies
with specified dielectric values and charge densities.

OOMPAA 279

PERFORMANCE

As mentioned above, performance is no longer a reason to avoid the use of C++ in
scientific programming. Several advances in compiler technology have brought this about.
First of all, good compilers do a thorough job of inlining functions, or placing the function
body directly into the calling code. Inline functions can even call other inline functions.
This is particularly important when using the accessor functions discussed above.

Second, good compilers can get rid of small, temporary objects and replace what remains
with equivalent, Fortran-style code. The expression template technique depends heavily on
this optimization as well as inlining; once the compiler strips out the expression objects,
it can recognize the equivalence to a Fortran do-loop. Other small objects, such as the
Vector3 templated objects, can take advantage of small-object optimization. For this rea-
son,Vector3 arguments to functions in OOMPAA are usually passed by value rather than
by reference; this coding practice encourages optimization.

Finally, several C++ compilers offer therestrict keyword to overcome thealiasing
problem. This qualifier can be applied to a pointer, and constitutes a promise to the compiler
not to use any other unrelated pointer to reference the same data as that referenced by the
restricted pointer. The key advantage formerly held by Fortran is that there is only one way
to refer to a memory location. C and C++, on the other hand, can refer to the same location
many times by using pointers, so compilers must make much broader assumptions that
inhibit optimization and vectorization. For example, a C function that adds two vectors to-
gether and places the result in a third has no way of knowing, during compilation, whether
either of the input vectors overlaps with the output vector, so such a function might not
take full advantage of a vector processor. However, using restricted pointers to point to the
vectors’ data alleviates this problem. OOMPAA’s lists use restricted pointers, particularly
in the looping macros. The Blitz++ vectors use restricted pointers, as well.

As a non-trivial comparison of OOMPAA with hand-coded Fortran, consider the com-
putation of the Lennard-Jones energy of a large group of particles. One way to proceed is
to loop through every pair of particles and sum up the Lennard-Jones terms:

List< MC Particle> atoms(62500);

// place into FCC lattice

...

real energy = 0.0;

FOR PAIRS IN LIST(MC Particle, atoms, atom1, atom2)

const Vector3< real> d = atom1.position() - atom2.position();

real r2 = 1.0/dot(d,d);

real r6 = r2*r2*r2;

real r12 = r6*r6;

real lj = r12 - 2.0*r6;

energy += lj;

END PAIRS IN LIST;

Another way is to use a cell list [11], which discretizes space into an array of cubes and
assigns each particle to a cell. The pairwise energy term is assumed to be zero beyond a
certain distance, and the width of each cell is the same as this cutoff radius. Thus, pairwise
interactions for a particle need only be computed with the other particles in its own cell and
the particles in the immediately neighboring cells. Each cell contains pointers to its member
particles. The code below creates the cell list in the form of aCell Collection object and

280 HUBER AND MCCAMMON

tells it the desired spacing. From the list of particles, the cell list figures out how many cells
are needed and where they are placed, and how many particles can be referenced by each
cell. Then, the cell list allocates memory for pointers, and assigns the particles to its cells.
Finally, the macroFOR PAIRS IN NEIGHBORING CELLS sequentially references each cell,
in each cell it sequentially references each particle, and for each particle it sequentially
references all pairs formed from (1) the current particle, and (2) each other particle that is
in the same cell, and the immediately neighboring cells ahead of the current cell. No pairs
are double-counted.

List< MD Particle> atoms(864000);

// place into FCC lattice

...

Cell Collection< MC Particle> cells;

cells.Set spacing(2.5);

cells.Set corners(atoms);

size t nc = cells.required cell size(atoms);

cells.Set n in cell(nc);

cells.Allocate cells();

cells.Add items(atoms);

real energy = 0.0;

FOR PAIRS IN NEIGHBORING CELLS(MC Particle, cells, atom1, atom2)

const Vector3< real> d = atom1.position() - atom2.position();

real r2 = 1.0/dot(d,d);

real r6 = r2*r2*r2;

real r12 = r6*r6;

real lj = r12 - 2.0*r6;

energy += lj;

END PAIRS IN NEIGHBORING CELLS;

Of course, in a real simulation, this can be combined with aVerlet listfor greater efficiency.
In neither example was any attempt made to improve the performance by changing the order
of pair traversals in order to account for the data cache. Future versions of OOMPAA may
have this feature built into the macros, with no change in syntax.

For both cases, Fortran programs were written to carry out the same computations.
The memory layout of the data was made to resemble, as closely as possible, that of the
OOMPAA implementation. The pairwise summation used 62,500 particles, and the cell list
summation used 864,000 particles. The computations were performed on a Silicon Graphics
Indigo 2 R10000 running the Irix 6.2 operating system. The Fortran code was compiled
using the native SGI Fortran 77 compiler, and the C++ code was compiled using the KAI
3.2d compiler from Kuck and Associates. Full optimization was used for all cases. The
timing results are summarized in Fig. 6; the C++ code has a speed of execution that is at

FIG. 6. Benchmark execution times in seconds.

OOMPAA 281

least 90% of the speed of the Fortran code. It should be noted that this level of performance
is unlikely to be reached by most other C++ compilers at this time.

CONCLUSIONS

Using object-oriented programming techniques, it is now possible to write molecular
simulation code that is both flexible and rapidly executing. C++ class libraries such as
OOMPAA will be very useful for writing more complex molecular simulations. OOMPAA
source code can be found at the web sitehttp://chemcca10.ucsd.edu/∼oompaa/.

ACKNOWLEDGMENTS

This work has been supported in part by the NIH, the NSF, and the MetaCenter Program of the NSF Super-
computer Centers. G.A.H. is the recipient of NIGMS Postdoctoral Fellowship 1-F32-GM12862-01.

REFERENCES

1. J. Aqvist and A. Warshel, Simulation of enzyme reactions using valence bond force fields and other hybrid
quantum/classical approaches,Chem. Rev.93, 2523 (1993).

2. P. Bala, P. Grochowski, B. Lesyng, and J. A. McCammon, Quantum-classical molecular dynamics and its
computer implementation,Comput. Chem.19, 155 (1995).

3. M. Bhandarkar, R. Brunner, A. Dalke, A. Gursoy, W. Humphrey, N. Krawetz, M. Nelson, J. Phillips, and A.
Shinozaki, URL http://www.ks.uiuc.edu/Research/namd/Namd2.html, 1998.

4. G. Booch,Object-Oriented Analysis and Design, 2nd ed. (Addison–Wesley, Reading, MA, 1994).

5. R. Car and M. Parrinello, Unified approach for molecular dynamics and density-functional theory,Phys. Rev.
Lett.55, 2471 (1985).

6. T. W. Clark, R. V. Hanxleden, J. A. McCammon, and L. R. Scott, Parallelization using spatial decomposition
for molecular dynamics, inScalable High Performance Computing Conference, IEEE Comput. Soc., Los
Alamitos, CA, 1994), pp. 95–102.

7. C. Dellago, P. G. Bolhuis, and D. Chandler, Efficient transition path sampling: Application to Lennard-Jones
cluster rearrangements,J. Chem. Phys.108, 9236 (1998).

8. R. Elber, A. Roitberg, C. Simmerling, R. Goldstein, H. Li, G. Verkhivker, C. Keasar, J. Zhang, and A. Ulitsky,
MOIL: A program for simulations of macromolecules,Comput. Phys. Commun.91, 159 (1995).

9. A. H. Elcock, M. J. Potter, and J. A. McCammon, Application of Poisson–Boltzmann solvation forces to
macromolecular simulations, inComputer Simulation of Biomolecular Systems, Vol. 3, edited by W. F. van
Gunsteren, P. K. Weiner, and A. J. Wilkinson (Kluwer Academic, Dordrecht, 1997, pp. 244–261.

10. M. J. Field, P. A. Bash, and M. Karplus, A combined quantum mechanical and molecular mechanical potential
for molecular dynamics simulations,J. Comput. Chem.11, 700 (1990).

11. D. Frenkel and B. Smit,Understanding Molecular Simulation: From Algorithms to Applications(Academic
Press, San Diego, 1996).

12. M. K. Gilson, M. E. Davis, B. A. Luty, and J. A. McCammon, Computation of electrostatic forces on solvated
molecules using the Poisson–Boltzmann equation,J. Phys. Chem.97, 3591 (1993).

13. R. Hickey, Callbacks in C++ using template functors,C++ Report7, 42 (1995).

14. M. Holst, URL http://sdna3.ucsd.edu/mholst/codes/codes.html, 1998.

15. M. Holst and F. Saied, Numerical solution of the nonlinear Poisson–Boltzmann equation: Developing more
robust and efficient methods,J. Comput. Chem.16, 337 (1995).

16. D. Horvath, D. van Belle, G. Lippens, and S. J. Wodak, Development and parametrization of continuum
solvent models. I. Models based on the boundary element method,J. Chem. Phys.104, 6679 (1996).

17. G. A. Huber and S. Kim, Weighted-ensemble Brownian dynamics simulations for protein association reactions,
Biophys. J.70, 97 (1996).

282 HUBER AND MCCAMMON

18. G. A. Huber and J. A. McCammon, Weighted-ensemble simulated annealing: Faster optimization on hierar-
chical energy surfaces,Phys. Rev. E55, 4822 (1997).

19. M. Nelson,C++ Programmer’s Guide to the Standard Template Library(IDB Books Worldwide, Foster City,
CA, 1995.

20. A. Robison, C++ gets faster for scientific computing,Comput. Phys.10, 458 (1996).

21. W. Schroeder, K. Martin, and B. Lorensen, URL http://www.kitware.com/vtk.html, 1998.

22. J. L. Smart, T. J. Marrone, and J. A. McCammon,J. Comput. Chem.(1997).

23. M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra,MPI: The Complete Reference(MIT
Press, Cambridge, MA, 1997).

24. S. R. Kohn and S. B. Baden, A parallel software infrastructure for structured adaptive mesh methods, in
Proceedings, Supercomputing ’95, San Diego, 1995.

25. G. van Rossum, URL http://www.python.org, 1998.

26. T. Veldhuizen, Expression templates,C++ Report7, 26 (1995).

27. T. Veldhuizen, URL http://monet.uwaterloo.ca/blitz/benchmarks/, 1998.

28. T. Veldhuizen, URL http:/monet.uwaterloo.ca/blitz/, 1998.

	INTRODUCTION
	OBJECTS
	FIG. 1.

	TEMPLATES
	LISTS
	POINTER LISTS
	FIG. 2.

	CHEMICAL STRUCTURES
	GROUPS
	FIG. 3.
	FIG. 4.

	VECTORS
	GENERAL VECTORS
	PARAMETERS
	FIG. 5.

	OTHER CORE FEATURES
	ADDITIONS
	PERFORMANCE
	FIG. 6.

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

