Journal of Computational Physié§1,264-282 (1999) ®
]
Article ID jeph.1999.6199, available online at http://www.idealibrary.conl DE &l.

OOMPAA—ODbject-Oriented Model for Probing
Assemblages of Atoms

Gary A. Huber and J. Andrew McCammon

Department of Chemistry and Biochemistry, University of California, San Diego,
La Jolla, California 92093-0365
E-mail: ghuber@chemccal0.ucsd.edu, Fax: 619-534-7042

Received July 7, 1998; revised December 24, 1998

An object-oriented library is presented for building molecular-modeling software.
This library allows the user to treat individual components of molecules as C++
objects, and provides various templated lists and vector classes for manipulating
these objects. Other utilities, such as minimizers and integrators, are continually being
added to the body of code. Performance is a key consideration; the performance of
simple benchmarks is comparable to that of hand-coded Fortraness Academic Press

Key Wordsobject-oriented; molecular mechanics.

INTRODUCTION

Molecular simulation software is not simple, and most of it is written with computatior
efficiency in mind, rather than elegance of expression. This means that the source cc
written in Fortran or C, with very strong coupling among the different components of 1
program. This is fine if the software will not change or be combined with other softwa
a computer program can then be treated as a monolithic black box. However, comj
programs grow and change, and programs that are nicely written in Fortran tend to dec
over the years as generations of scientists and programmers add their own ideas. In ad
adding new functionality to such programs is a very laborious and tedious undertaking; t
many promising ideas in the literature never make it into widely used code. Finally, t
different software packages from two different research groups or companies might |
different functions that one would want to combine; this is almost an impossible undertal
for many cases. Even when workers succeed in altering or combining such code, the re
cannot always be trusted because of the introduction of bugs. This problem is not un
to the world of molecular modeling; it is known as theftware crisid4].

A promising way out of the software crisis in molecular modeling lieshject-oriented
programming Traditional procedural languages like Fortran are built around the subr
tine, and the data are conceptually separate from the subroutine. This works well fror
efficiency viewpoint, because that is how the computer sees the world, but it is not |

264

0021-9991/99 $30.00
Copyright© 1999 by Academic Press
All rights of reproduction in any form reserved.

OOMPAA 265

humans see the world. Object-oriented languages, on the other hand, group related |
of data together with the functions that act upon them; these are the objects. This re
in more understandable code and a decoupling of unrelated code that allows the proc
mer to change one part of the program without affecting any other parts. The progran
can also create new types of objects from existing objects without changing the orig
object. In the past few years, interest has grown in devising heterogenous models for
molecules; such hybrids include combinations of quantum-mechanical [5, 10, 1, 2] metl
and continuum descriptions of matter [12, 22, 9, 16] with molecular mechanics. Also
order to improve configuration-space sampling and to make use of parallel computers
often desirable to use multiple copies of such models [17, 18, 8, 7]. Finally, for very la
systems, it might be necessary to distribute just one copy over many processors [6]. S
lations combining several of the above features may require code of extreme complex
written in C or Fortran.

Until recently, the main issue has been performance. C++ code did not compar
speed to equivalent Fortran code. However, this has changed in the past few years
C++ compilers that are now available. Numerically intensive C++ code can run as fas
Fortran code, while keeping the elegance of expression afforded by objects. In some ¢
this results in more efficient algorithms, because related pieces of data are more like
lie near each other in memory [27]. There are other elegantly formulated object-orie
languages such as Java and Eiffel, but none of them rival C++ in performance. Tht
appears that C++ holds the future for scientific programming. Indeed, there already e
at least one widely used molecular simulation package that is written in C++, NAMD [:

This situation is the inspiration for OOMPAA (Object-Oriented Model for Probing A:
semblages of Atoms), which is a collection of C++ classes for constructing molecu
modeling software. OOMPAA has two major divisions: ttmre and theadditions The
core includes the most basic objects that are used to describe molecules and is exy
to remain very stable. The additions to OOMPAA include include C++ classes that ac
machines to manipulate the data structures in the core; this section is constantly gro
Most of this article describes the core. OOMPAA strives to be very general. While i
sure to be useful in studying biomolecules, there is no obstacle to using it on other t
of systems, and nothing in the core is unique to biomolecules. OOMPAA tries to insu
the user from the complexities of C++ (of which there are many). The user should ¢
need to know what classes, objects, and templates are, and to understand the conc
pointers. Included are several scripts that automatically generate C++ code for classes
desired properties. OOMPAA is written with the assumption that the user has availak
state-of-the-art optimizing C++ compiler that is nearly compliant with the draft ANSI/IS
standard. Assuming good compilers, OOMPAA is meant to be portable; it makes use of ¢
portable class libraries, and all scripts are written in the language Python [25]. OOMPA
free, users are encouraged to add classes to it or make their own code freely available
OOMPAA makes use of other free C++ class libraries, such as VTK [21] for visualizati

OBJECTS

In computer science, ambjectis a collection of data that has functions defined on i
Often, an object in the computer will correspond to an object in the real world, with the ¢
representing relevant information about the object’s state and the functions represe
possible actions taken by the object. In C++, the type of an object is known @asts

266 HUBER AND McCAMMON

All objects belonging to the same class have the same functions and the same typ
data, but each object has its own copy of the data. First, the programmer creates a
which describes the data and functions, and later in the computer program, objects o1
particular class are created, manipulated, and destroyed. The closest thing to classes
C language isstructures which are collections of data; Fortran 90 hasdules while
Fortran 77 has nothing that resembles classes.

In most object-oriented languages, one can dgfimatersor referencego objects. A
pointer or a reference is merely a number that contains the starting location of an obj
data in memory. C++ has both pointargdreferences; they are essentially the same thing b
with slightly different syntax. Throughout this paper, the tgromterwill refer generically
to both C++ pointers and references unless the distinction must be made clear. Poi
are useful because one object cafer to another object or be associated with it, withou
needing to copy any data. When a pointer is created in C++, it must always point to obj
of the same class, with one exception, given below.

Objects are very versatile. Objects can contain other objects or pointers to other obj
and functions can have objects or pointers to objects as arguments and return values
classes can be created from existing classes by adding new functions and data; the olc
is not changed, but the new class can be used wherever the old class is used. This is k
asinheritance Typically, the old class is known as tiparent or thebase classand the
new class is known as thehild. A pointer that points to an object of a particular class ca
also point to an object belonging to one of its child classes.

Objects also facilitatdata-hiding in which the internal workings of the object are hidder
away from the outside world. Itis possible to restrict access of data members and functio
adatamemberis declared tofrésate(as opposed tpublic), only member functions of that
particular class can gain direct access to those data. Indeed, it is considered poor prol
ming practice for any datato be public; only functions should be public, as will be seen be

In OOMPAA, perhaps the most basic class is Haeticle. The OOMPAA Particle
has very few features; the only data member is an unsigned long integer, the pddicle
that can be used to represent the chemical type of the particle. For example, one
of the id might be used to represent an aliphatic carbon atom, while another value
represent an alcohol oxygen atom. The core of OOMPAA places no restrictions and m
no assumptions regarding the use of the id.

By itself, the bareparticle classis not very useful, but the user can create new partic
like classes with useful features by inheriting from the basicticle class. Suppose that
the user wants to perform a Monte Carlo simulation, in which particle positions are varied
stochastic manner. Clearly, the particle needs datato describe its position. So, the user c
a class, calletiC_Particle, which contains another object representing a 3-dimensior
vector. The data are accessed indirectly throagbessor functionsThe following C++
code gives an outline of this new class (function implementations are not shown):

class MC_Particle: public Particlef
public:
void Set_position(const Vector3< double> x);
Vector3< double> position() const;
void Add_to_position(const Vector3< double> dx);
private:
Vector3< double> _position;

};

OOMPAA 267

MC_Particle

position velocity force
id mass

FIG. 1. Possible memory layout of a particle used in MD simulations.

The class describing the vector of 3 double-precision floating-point numbers
Vector3< double>; it hastemplatesyntax, which will be described below. The first func:
tion sets the position to X, the second function returns the particle’s position, and the 1
function increments the position by dx. Fortunately, the user never needs to write ¢
code; OOMPAA provides a scripireate_particle, to automatically generate C++ code
for child classes having desired features. The user only needs tirtelte particle
that the new particle class must have a position described by a vector of the desired
and all of the new C++ code is generated. (This is in accordance with the philosoph
shielding the user from the complexities of the C++ language.) Of course, the user can
set and retrieve thBC_Particle object’s id which is inherited from the basarticle
class.

Next, suppose that the user needs to perform a molecular dynamics simulation ol
same system of particles. Now, a new particle cl#bsParticle, is needed, which has
mass, velocity, and force, in addition to id and position. Using@heate particle
program, the user can specify that the velocity and force on the particle be treated
the position above, with 3-dimensional vectors storing the data. However, there are se
different ways in which one might handle the mass. If all particles have the same mass,
the functiommass () that returns the object’s mass can simply return the same value for
objects. If memory is notin short supply, each object can carry around its own floating-p
number representing its mass. Finally, the mass of the object can be computed by |
the object’s id number to look up the mass in a table. No matter how the retrieval of
mass is implemented, it is desirable that the interface betweeMbtiParticle object
and the outside world, namely, the functiesss (), not change. It is possible that the use
might want to change the way in which the mass is implemented; if the interface st
the same, then all code that relies on it will still work. This would not be possible if t
data representing the mass could be manipulated directlyCFégte particle script
can generate code for all three possible implementations. For the case where the m
stored explicitly, the layout of #D_Particle object is illustrated in Fig. 1. The reader
should note that neither of these classes derived framicle is included in the core of
OOMPAA,; the authors do not presume to know which typemfarticle is most useful
for the user.

TEMPLATES

Avery useful code-reuse device in C++ is the techniquemilatesAlthough templates
have a very broad domain of usefulness, in the core of OOMPAA they are used mainly
the creation of objects that contain either other objects or pointers to other objects. Pel

268 HUBER AND McCAMMON

the most simple example is that of the cldestor3< double> above, which contains
three double-precision floating-point numbers. It is also possible to have a 3-dimensi
vector of integers by creating objects of the clésstor< int>. Eventhough these are two
different classes, they have the same code, which is written once in a very generic me
to accommodate all reasonable contained data types. In addition to templated clas:s
is possible to have templated functions which can have different types of arguments
return values.

LISTS

In OOMPAA, one does not usually deal with individual particles; rather, one deals w
lists of particles. Thus, OOMPAA provides a template clagst<>, which represents
variable-length lists of objects. So, if the user wants to create a list with1O®@rticle
objects described above, the code would be:

List< MC_Particle> particles(1000);

When this code is executed, a list of 1000 new particles is created,; it is then the user’s
to put meaningful data into the particles themselves. One can access the member pal
as if the list were a C++ array:

Vector3< double> x;
x = particles[100].position();

Here, the position of the 100th particle is placed into the vectéFhe “dot” notation used
in the second line is used to denote the member fungidaition () of a particular object
position[100].) Unlike simple C++ arrays, the OOMPARist has member functions
that can copy other lists, add and delete members, apply a given function to the mem
create sub-lists, and carry out set operations such as unions and intersections. Tem
lists are not a new idea; the C++ Standard Template Library [19] uses the same idea (in
the Oompaa list makes use of the Sddctor). An important limitation is the fact that this
list can contain onlyIC_Particle objects; this restriction is eased in the next section.

POINTER LISTS

The templated cladsi st is actually two templated classes in one; it is possible to cree
lists that contairpointersto objects rather than the objects themselves. The type of list
the illustration above is calledlzody list as opposed to pointer list because it contains
the bodies of the objects. Body lists are obviously very important because they contai
of the information, but pointer lists are very flexible and useful for manipulating groups
atoms and for making new lists.

As an illustration, consider the following:

List< MC_Particle> mc_particles(5);
List< MD_Particle> md_particles(5);
List< MC_Particle *> all particles = mc_particles + md_particles;

Two body lists, one of fivéIC_Particle objects and one of fivBD_Particle objects,
are created, and then a pointer list is created that represents the union of the two body
The pointer list is distinguished by theinside the template brackets. When the pointe

OOMPAA

mc_particles

RLLAE T

md_particles

\ 4
\ \ |

il] i i
|II ',I IlII '|I I', / /

all_particles

FIG. 2. Pointer list example.

269

list is created, no changes take place inside either body list, but the pointer list contair
pointers which point to each member of the two body lists (Fig. 2). Also, because the ¢

MD_Particle is a child class of clag#C Particle, it is possible for a list of pointers to
the parent class to contain pointers to the child class. This flexibility can be very useful
example, if the user wants to carry out Monte Carlo steps oNhearticle objects as
well as theMC_Particle objects, the pointer list can be passed to the function or obje

that performs such a computation. Moreover, the user can create an entirely new boc

from this pointer list:

List< MC_Particle> all_particle_bodies

= all_particles.body_list();
Now, the listall particle bodies contains 10 newIC_Particle objects that are
copies of the original objects. The five objects that correspond to the oritfirdrticle
objects arsslicedfrom the original, with the mass, velocity, and force data excluded.

Pointer lists can be useful for selecting out groups of particles for special treatment
an illustration, suppose that the atoms in the active site of an enzyme merit some sp
treatment apart from the rest of the atoms. Given a function that retutrsor false if
an atom is or is not considered to be in the active site, this is easily done:

bool in_active_site(const MC_Particle &); // returns true if in
active site

List< MD_Particle> all atoms;
// now initialize list;

List< MD_Particle *> active_site_atoms
active_site);

all_atoms.sub_list(in_
// select atoms that are not in active site

List< MD_Particle *> other_atoms

all_atoms - active_site_atoms;
It should be noted that the functidm_active_site takes a reference to tiparentclass
as an argument, assuming that only the position is necessary to determine members
the active site. Still, a list of the objects belonging to the child class can make use of

270 HUBER AND McCAMMON

function, opening up the possibility of reusing Monte Carlo code in molecular dynam
code. Indeed, pointer lists contain a larger set of functions than do the body lists, becau
their flexibility. Although rearranging lists is done infrequently enough in typical simulatiol
thatitis unlikely to become a bottleneck, care has been taken to ensure that no list opera
execution time has a scaling worse tHatog N, whereN is the number of items.

The= operator, when applied thist classes in OOMPAA, follows the convention of
copy-by-referencerThis is the default behavior of objects in several other object-orient
languages such as Java and Python, but not in C++. For example, in the code

List< MD_Particle> 1list1(100), list2(200);
list2 = listil;

what happens is thatist2 and1ist1 now refer to the same underlying object containing
100 particles, while the 200 particles in the originakt2 are deleted. Each underlying list
object keeps track of the number of names referring to it, and when the last name is de
or assigned to something else, the underlying object deletes itself. This differs comple
from the container objects in the Standard Template Library, in which the objects on
right side of the= operator are copied to the container on the left. The copy-by-referer
convention increases the convenience of complicated list manipulations.

OOMPAA includes convenient C-style macros for looping through members of lists ¢
pairs of members. For example:

List< MD_Particle> list(10000);

FOR_ITEMS_IN_LIST(MD_Particle, list, atom)
Do_something(atom);
END_ITEMS_IN_LIST;

In the above code, the functi®_something is applied to each member dist. Here
is a more complex example that loops through all pairs of particles in a list to compute
Coulombic energy of interaction:

List< MD_Charged Particle> 1list(10000) ;
// initialize atoms

double energy = 0.0;
FOR_PAIRS_IN_LIST_OUTER(MD_Charged Particle, list, atoml)
double gl = atoml.charge();
FOR_PAIRS_IN_LIST_INNER(MD_Charged Particle, list, atom2)
double g2 = atom2.charge();
Vector3< double> r = atoml.position() - atom2.position();
double R = norm(r);
energy += ql*q2/R;
END_PATIRS_IN_LIST;

Good C++ compilers can optimize the above code to get performance that is comy
ble to equivalent Fortran code. The macros work with both pointer lists and body lists
some cases, perhaps depending on personal programming style, it might be desira
useiterators [19] instead of macros to loop through a sequence of objects. Iterators
more flexible, but macros might be more readable to those coming from a Fortran-b:

OOMPAA 271

background. Future versions of OOMPAA will include iterators corresponding to the lot
ing macros.

CHEMICAL STRUCTURES

Another kind of templated container, tlebemical structurecontains a fixed, small
number of pointers to other objects. It also contains an id integer just like the one
Particle objects. In OOMPAA, the name of the classSisructure. It hastwo template
parameters: the first denotes the type of object pointed to, and the seconéhiegan
that denotes the number of pointers. Integers can be template parameters; this fixe
number of pointers during compilation, allowing more efficient code. One very import:
application of chemical structures is the representation of bonds between atoms; tl
number can denote the type of bond, such as double carbon—carbon or single ca
nitrogen. Likewise, chemical structures with three pointers can represent bond angles
quartets of pointers can represent torsion angles. One disadvantage of templates is tt
names can become unwieldy; in such cases, it can be useful toypséef to condense
the names:

typedef Structure< MD_Particle, 2> Bond;
List< Bond> bonds;
List< Bond *> active_site_bonds;

As seen abovestructure objects can be stored in body lists and referenced by poin
lists. When either type of list contains a chemical structure, additional list functions
available to sele®tructure objects with certain properties or to create listeafticle
objects referenced by tt&ructure objects.

GROUPS

A third kind of templated container is tlggoup. A group is like a chemical structure in
that it refers to other objects rather than containing them, it has a fixed length, and it he
id number. Unlike a chemical structure, it does not contain an individual pointer for e
referenced object; instead, it contains one pointer that points to an object or a pointer
List object and an integer than denotes the number of objects referenced in the list be
the first one referenced (Fig. 3). Like the classt, groups come in two flavors. Body
group points directly to objects in a body list, ancpainter grouppoints to other pointers
in a pointer list, thus indirectly referencing the objects. Each object referenced by a gt
is given a unique name and is accessed by appropriate functions. Because groups are
complex than chemical structures, the sciptate_group is used to generate the C++
code for a group class; it uses an input file that gives the names for the referenced ob
Group classes do not have an integer template parameter, it is unnecessary because tl
code is generated by the script. Body groups and pointer groups have similar behavio
with pointer groups, it is possible to “delete” object references by setting the pointe
the corresponding pointer list to a null value. Finally, one can store and reference gr
using theList class; as with chemical structures, additional functions become availa
for manipulating groups.

One use for groups is to represent amino acids. A base dassp Acid, contains
references to the atoms that all 20 of the usual amino acids have in common. The g

272 HUBER AND McCAMMON

Included in group

'
~

List

Group

FIG. 3. Memory layout of a group and its data.

classes representing the actual amino acids inherit fietho_Acid, adding references to

their particular atoms. Similar groups can be generated to reference the bonds, bond a
and torsion angles of the amino acids. The atoms of a protein molecule can be repres
as shown in Fig. 4. All of the atoms are contained in one body list, and all of the am
acid group objects are contained in twenty different body lists. Each of the amino acid b
lists contains groups of a specific type; for example, all alanine groups are contained ir
body list. Finally, a pointer list of plaitmino_Acid groups points to all of the amino acid
groups, in the same order in which they appear in the protein. Using this scheme, one c
with a few lines of code, create a list of atoms belonging to all amino acid residues wt

Body List of Atoms
A e
e o
/,’ E S
/// e -
| Asp ...other amino acids ...
M
\.\'\.
\\\ “'\-\..\ 2
- -
\\ L 2

Pointer List to Amino Acids

FIG. 4. Possible organization of protein molecule data.

OOMPAA 273

o carbons lie inside the active site:

bool in_active_site(const MC_Particle &); // returns true if in
active site

typedef List< Amino_Acid< MD_Particle> *> AA_List;

AA List residues;

// set up residues

List< MD_Particle *> alpha_carbons =
residues.selected members(Amino_Acid::Ca);
List< MD_Particle *> alpha_carbons_in_site =
alpha carbons.sub_list(in_active_site);
AA List residues_in_site =
residues.groups_with members(alpha_carbons_in_site);
List< MD_Particle *> atoms_near_site = residues_in_site.all_members();

VECTORS

Injust about every scientific computing application, itis desirable to treat large collecti
of numbers as vectors, and to use these vectors in mathematical expressions within the
One of the main impediments to the use of C++ in scientific computing has been the abs
of standard vectors and matrices. When someone creates a class library for a particuls
of computation, very often the author includes his own vector and matrix classes. It is
that the C++ Standard Template Library hageztor class, but this class does not have
many facilities for numerical computing. Thus, this can lead to serious incompatibilit
between different class libraries. Another obstacle is related to the operator overloadir
C++. Consider the following example:

Vector< double> a(10000), b(10000), c(10000);
// initialize vectors

c =a+b;

In most obvious schemes, theoperator isoverloaded or redefined, to return dector
object, and the- operator is overloaded to accepWactor object. Then, a temporary
vector is created which holds the sumzo&ndb, and it then is copied te. This greatly
inhibits performance, especially on vector supercomputers. However, the recently devel
technique okexpression templatg6], together with good optimizing compilers [20], has
completely changed this situation. Instead of returning a whole vector-tbeerator
returns a small, temporary object, calledexpression objecthat points to the vectors
andb. The= operator accepts this small object, hands it back an integer index, and the s
expression object computes the sum of the elemenisaofdb denoted by the index. The
true performance boost is realized when the compiler is sophisticated enough to elim
the small object altogether and generate code that is equivalent to the following C coc

double a[10000], b[10000], c[10000];

int i;

for (i=0; i<10000; i++)
alil = b[i]l + c[il;

274 HUBER AND McCAMMON

Furthermore, the expression template technique works on arbitrarily complice
expressions.

This technique, in addition to many others, is a part of the Blitz++ array class library
Veldhuizen [28]. The Blitz++ arrays comprise the primary vectors of OOMPAA. Blitz+
distinguishes large, variable-length arrays that are allocated on the heap from small, fi
length arrays that are allocated on the stack. At the time of this writing, the small ve
classes of Blitz++ are still under construction, so OOMPAA has included its own templa
Vector3 class, seen in several examples above. Although it is somewhat risky to tie a
library to one vector implementation, it is the authors’ judgment that the Blitz++ arrays v
eventually become the standard for C++ scientific computing. OOMPAA does not use
bare Blitz++ arrays, but it uses its own templated t or class that inherits from the Blitz++
array and adds more features to allow interaction wéheral vectorsdiscussed below.

GENERAL VECTORS

Often it is convenient to represent certain components of the items in a list collectiv
as one vector. For example, one might want to treat the positions of the atoms in &
as one vector, the velocities as another, and the accelerations as a third. This is do
the General Vector class, which takes two template parameters. The first paramete
a place-holder class that selects out the appropriate accessor function of the item, ar
second parameter is the type of list. Themeral Vector class acts as a “wrapper” around
the list, causing it to appear as a vector to the rest of the code. Assume that the
MD_Particle has a functioracceleration() that computes the acceleration from the
mass and the force and returngextor3< double> object. Then, the implementation of
a velocity-Verlet algorithm on a list of particles might look like this:

List< MD_Particle> atoms(10000);

General Vector< v::position, List< MD_Particle> > x(atoms);
General Vector< v::velocity, List< MD_Particle> > v(atoms);
General _Vector< v::acceleration, List< MD_Particle> > a(atoms);

v += ax*x0.5%dt;

x += v*dt;
Compute_forces() ;
v += ax*0.5%dt;

This code can be optimized by the compiler to be equivalent to hand-coded C or For
The place-holder classes reside in the namespéz@void name clashes, and they can b
automatically generated by the scripteate_general_vector. The expression template
method is implemented for general vectors, and they can interact fully with OOMP;
Vector objects. Another templated class, twnposite Vector, allows one to stack two
or more differentVector or General Vector classes end-to-end to make a new vectc
class.

PARAMETERS

OOMPAA's treatment of parameters, such as those found in molecular mechanics ¢
putations, represents an attempt to satisfy three requirements. First, the parameters
rapidly accessible to the computer. Second, it should be very easy for the user to ch

OOMPAA 275

parameters and introduce new parameters. Third, the presence of the parameters shc
clear within the code itself; a hasty glance at the code should suffice to reveal the
meters.

In OOMPAA, parameters are stored in atempla@etameter_List object. This classis
templated with respect to the C++ type of of the parameter; one can have not only param
that are floating point numbers, but also vectors, tensors, integers, eRaddaeter_List
acts like a large array, where the parameter values are indexed by the type of paral
(e.g., charge, mass, bond-stretch spring constant) and the type of chemical structure
aliphatic carbon, alcohol oxygen, carbon—carbon double bond), as given by its id nun
Many parameters depend only on one object (like charge). Others depend on two ot
(like the Lennard-Jones interaction parameters); in this case, the parameter value wol
indexed by the parameter type and both of the atom types.

When aParameter_List object is created, it is initially empty. THarameter List
is informed of a parameter type by giving it a string representing a name for the param
TheParameter_List then assigns a unique unsigned integer to the parameter; then,
integer can be obtained from tRerameter List and used to access parameter value
A chemical object type is placed into tRerameter List in the same manner. When a
name (in the form of a string) is given to tRerameter _List, it registers a unique index.
The Parameter List class provides a function for reading parameters and their nan
directly from a file with a very simple format.

In order to enter the parameter value of interest,Raeameter List object is given
two integers and a parameter value. One integer represents the type of paramete
the other represents the type of chemical object. The parameter value is entered int
Parameter_List object under those two indices. In a similar manner, the parameter ve
can be retrieved during a simulation by giving theRheameter _List object the same two
integers. (For the case where the parameter depends on two chemical objects, the par:
list would be given three integers.) During a simulation, the parameter name string ant
object name string should not be used to retrieve the parameter. Looking up entries
table using strings takes much longer than using an integer index. The string is mer
convenience in the event that therameter_List object is used in several subroutines
At the beginning of each subroutine, the relevant integer indices can be extracted usit
easily remembered name.

Anillustration of this process is shown in Fig. 5. The chemical object of interestis a sin
bond between two ordinary carbons, and the parameter of interest is the spring cor
for the bond stretching motion. In Step 1, the bond type is entered under the gate °
Single Bond,” and the resulting index is placed into the variabl€Cs. In Step 2, all of
the carbon—carbon single bonds in the simulation have their id’s setCts. In Step 3,
the parameter type is entered under the n@eel Stretch and the resulting index is
placed intoi_BS. In Step 4, the value of the parameter is stored, using the two indices fr
above. Finally, during the simulation, in Step 5, the parameter value is retrieved using
two indices. Chances are that Step 5 occurs within a loop that goes through all bond:
index representing the bond type is extracted fromith@ function of each bond.

typedef Structure< Atom, 2> Bond;

List< Bond> bonds;

// initialize bonds

Parameter_List< double> bond_parameters;
// Step 1

276 HUBER AND McCAMMON

®
OO

= ®

"C-C Single Bond" cCS

"Bond Stretch"
_ \
General_Parameter_List
@

iBS | L]
i CCS m
value

i_/BS @ \

i_CCS value

FIG. 5. lllustration of parameter list use.

size_t i_CCS = bond_parameters.Add_type ("C-C Single Bond");
// Step 2
// Figure out which bonds are C-C and set their id’s to i_CCS

// Step 3

size_t i_BS = bond_parameters.Add_parameter("Bond Stretch");

// Step 4

double C_C_single_bond_stretch = ...;

bond_parameters.Set_parameter(C_C_single bond_stretch, i BS, i_CCS);
// Repeat above steps for other parameters and bond types

// Step 5

FOR_ITEMS_IN_LIST(Bond< Atom>, single bonds, bond)
// retrieve bond-stretch parameter
real k bond = bond parameters(i_BS, bond.id());

END_ITEMS_IN_LIST;
// or it can be done this way; which might be more efficient.
// access a vector containing all bond-stretch parameters
const std::vector< real>% bond_stretch_parameters =
bond_parameters.parameter_vector(i_BS);
FOR_ITEMS_IN_LIST(Bond< Atom>, single_bonds, bond)
real k_bond = bond_stretch_parameters[bond.id()];

END_ITEMS_IN_LIST;

OOMPAA 277

As can be seen, the parameters are closely coupled to the id numbers of the part
chemical structures, and groups. For this reason, objects that read in Protein Databast
in preparation of a molecular-mechanical protein simulation will also need to read in
appropriate parameter files at the same time.

Ensemble Lists

In many applications, one might simultaneously perform simulations on several copie
the physical system of interest. These applications might range from simple cases of se
one-copy simulations being run at the same time, to simulations where the different cc
actually physically interact with each other. Examples of potential applications inclt
the weighted-ensemble methods [17, 18] and the reaction pathway methods [8, 7]. T
copies can be contained in an object of the templated &l@ssmnble_List. At the time
of this writing, OOMPAA has only a serial implementation of thesemble_List, but
future plans include a parallel version, built on top of the standard MPI (Message-Pas
Interface) [23]. Eventhough tiBasemble_List is a container of objects, in much the sam
way as the OOMPAA.ist and the Standard Template Librargctor, it has additional
functions that collectively manipulate its members. Its syntax is designed so that whet
parallel version is available, it will be possible to port existing code to parallel comput
with minimal change. The parallel version uses the techniquiatz parallelism[24], in
which the same commands are issued on each processor, but with different local date

As a simple example, consider an ensemble list of 100 user-defiietule objects.
The molecules are created, issued a command, and queried about their status, and sc
deleted.

size_t n = 100;

Ensemble_List< Molecule> molecules(n);

// Commands to the parallel version to set the MPI_Communicator,
// customize placement of molecule objects on different processors

FOR_ITEMS_IN_ENSEMBLE(Molecule, molecules, molecule, i)
molecule.Move();

END_ITEMS_IN_ENSEMBLE;

Vector< double> energy(n);

GET_ENSEMBLE_INFO(Molecule, molecules, molecule, i, energy)
energy[i] = molecule.energy();

END_ENSEMBLE_INFO

double average_energy = energy.sum()/n;

FOR_ITEMS_IN_ENSEMBLE(Molecule, molecules, molecule, i)
if (energy[i] > 3.0*average_energy)

molecules.Remove_item(i);
END_ITEMS_IN_ENSEMBLE;

In the parallel version, thélolecule objects are apportioned among the differen
processors, but the vecterergy is duplicated on each processor. Insid®_ITEMS_IN_
ENSEMBLE loops, each processor applies there command only to its own objects, or
deletes only its own objects. After the deletions occunitfiescule objects are redistributed
across the processors if the loads become too unbalanced. InsgiTtRESEMBLE_INFO

278 HUBER AND McCAMMON

loop, each processor places the values fromdiscule objects into its copy of thenergy
array, and then exchanges its array contents with all of the other arrays on the other
cessors before the loop is exited. Some of the computation is duplicated across proce
but the assumption is made that the member functions didhecule objects take most
of the processor time.

OTHER CORE FEATURES

OOMPAA handles physical units in a unified manner. First, it assuitnedamental
unitsof angstroms for length, atomic mass units for mass, picoseconds for time, Kelvin
temperature, and the unit charge for electrical charge. Next, it providestaclass for
building new physical units and two functions for converting to and from the fundamer
units. Finally, it provides many built-in physical units and physical constants.

OOMPAA deals with the problem of passing functions as arguments to other functi
in a consistent manner. In C++, there are three basic types of functions: unbound funct
such as those in C and Fortran, non-constant member functions of a class, and col
member functions of a class. Even if templates are used, it is not possible to pass,
argument, a function of one kind to a function that expects a function of another kind. T}
the programmer is faced with the prospect of writing three versions of the same funct
Based on software by Hickey [13], OOMPAA includes templated classes that “wrap”
different types of function information into the same type of object, thus allowing the sa
code to serve for all three cases. Although the casual user who passes functions to fun
does not need to be aware of this method, it removes a major obstacle to code develoy
within OOMPAA.

ADDITIONS

In scientific modeling, there are two general uses for objects. The first use is to repre
the objects being simulated; this is the main emphasis of OOMPAA's core. The seconc
of objects is that of “machines,” or tools for carrying out a task. Several of these tools
already included in the additions to OOMPAA, and many more will be added in the futt
Already included are functions for computing bond and torsion angles and their derivat
as functions of three and four positions, respectively. There are multivariate minim
classes which can be applied to any function and generalized vector. There are diff
types of numerical integrators, including multiple-time step integrators, which can take
set of generalized vectors as inputs. OOMPAA haelalist, which groups particles into
cubic cells to facilitate the computation of pair-wise short-ranged forces. OOMPAA |
classes for performing weighted-ensemble dynamics and annealing. There are class
viewing lists of particles that make use of classes from the Visualization Toolkit (VTk
which itself is object-oriented, portable, and free.

OOMPAA also has several classes for performing continuum electrostatic calculatit
which has been used successfully for eliminating atomic degrees of freedom in simulat
of proteins. Included is a grid class for storing the input and results of finite-differer
computations, electrostatic solver classes that sit on top of multigrid code written in C
Holst [15, 14], and classes that wrap lists of particles to make them appear to be solid b
with specified dielectric values and charge densities.

OOMPAA 279

PERFORMANCE

As mentioned above, performance is no longer a reason to avoid the use of C+
scientific programming. Several advances in compiler technology have brought this al
First of all, good compilers do a thorough job of inlining functions, or placing the functi
body directly into the calling code. Inline functions can even call other inline functior
This is particularly important when using the accessor functions discussed above.

Second, good compilers can get rid of small, temporary objects and replace what ren
with equivalent, Fortran-style code. The expression template technique depends heav
this optimization as well as inlining; once the compiler strips out the expression obje
it can recognize the equivalence to a Fortran do-loop. Other small objects, such a
Vector3 templated objects, can take advantage of small-object optimization. For this
son,Vector3 arguments to functions in OOMPAA are usually passed by value rather tf
by reference; this coding practice encourages optimization.

Finally, several C++ compilers offer thesstrict keyword to overcome thaliasing
problem. This qualifier can be applied to a pointer, and constitutes a promise to the com
not to use any other unrelated pointer to reference the same data as that referenced
restricted pointer. The key advantage formerly held by Fortran is that there is only one
to refer to a memory location. C and C++, on the other hand, can refer to the same loc
many times by using pointers, so compilers must make much broader assumptions
inhibit optimization and vectorization. For examp#eC function that adds two vectors to-
gether and places the result in a third has no way of knowing, during compilation, whe
either of the input vectors overlaps with the output vector, so such a function might
take full advantage of a vector processor. However, using restricted pointers to point tc
vectors’ data alleviates this problem. OOMPAAs lists use restricted pointers, particul:
in the looping macros. The Blitz++ vectors use restricted pointers, as well.

As a non-trivial comparison of OOMPAA with hand-coded Fortran, consider the co
putation of the Lennard-Jones energy of a large group of particles. One way to proce
to loop through every pair of particles and sum up the Lennard-Jones terms:

List< MC_Particle> atoms(62500);
// place into FCC lattice

real energy = 0.0;
FOR_PAIRS_IN_LIST(MC_Particle, atoms, atoml, atom2)
const Vector3< real> d = atoml.position() - atom2.position();
1.0/dot(d,d);
real r6 r2*%r2*r2;
real rl2 = r6*r6;
real 1j = r12 - 2.0*r6;
energy += 1j;
END_PAIRS_IN_LIST;

real r2

Another way is to use a cell list [11], which discretizes space into an array of cubes
assigns each particle to a cell. The pairwise energy term is assumed to be zero bey
certain distance, and the width of each cell is the same as this cutoff radius. Thus, pair
interactions for a particle need only be computed with the other particles in its own cell
the particles in the immediately neighboring cells. Each cell contains pointers to its men
particles. The code below creates the cell list in the form@fia _Collection object and

280 HUBER AND McCAMMON

tells it the desired spacing. From the list of particles, the cell list figures out how many ¢
are needed and where they are placed, and how many particles can be referenced b
cell. Then, the cell list allocates memory for pointers, and assigns the particles to its c
Finally, the macr@’OR_PAIRS_IN_NEIGHBORING_CELLS sequentially references each cell,
in each cell it sequentially references each patrticle, and for each particle it sequent
references all pairs formed from (1) the current particle, and (2) each other particle th
in the same cell, and the immediately neighboring cells ahead of the current cell. No
are double-counted.

List< MD_Particle> atoms(864000);
// place into FCC lattice

Cell Collection< MC_Particle> cells;

cells.Set_spacing(2.5);

cells.Set_corners(atoms);

size_t nc = cells.required_cell_size(atoms);

cells.Set n_in_cell(nc);

cells.Allocate cells();

cells.Add_items(atoms);

real energy = 0.0;

FOR_PAIRS_IN_NEIGHBORING_CELLS(MC_Particle, cells, atoml, atom2)
const Vector3< real> d = atoml.position() - atom2.position();
real r2 = 1.0/dot(d,d);
real r6 = r2*r2*r2;
real rl2 = r6*r6;
real 1j = r12 - 2.0*r6;
energy += 1j;

END_PAIRS_IN_NEIGHBORING_CELLS;

Of course, inareal simulation, this can be combined withrdet listfor greater efficiency.
In neither example was any attempt made to improve the performance by changing the:
of pair traversals in order to account for the data cache. Future versions of OOMPAA |
have this feature built into the macros, with no change in syntax.

For both cases, Fortran programs were written to carry out the same computati
The memory layout of the data was made to resemble, as closely as possible, that ¢
OOMPAA implementation. The pairwise summation used 62,500 particles, and the cel
summation used 864,000 particles. The computations were performed on a Silicon Gra
Indigo 2 R10000 running the Irix 6.2 operating system. The Fortran code was comp
using the native SGI Fortran 77 compiler, and the C++ code was compiled using the |
3.2d compiler from Kuck and Associates. Full optimization was used for all cases. -
timing results are summarized in Fig. 6; the C++ code has a speed of execution that

| Fortran C++
Pair Summation 56.4 57.5
Cell List 29.2 32.3

FIG. 6. Benchmark execution times in seconds.

OOMPAA 281

least 90% of the speed of the Fortran code. It should be noted that this level of perform

is

unlikely to be reached by most other C++ compilers at this time.

CONCLUSIONS

Using object-oriented programming techniques, it is now possible to write molect

simulation code that is both flexible and rapidly executing. C++ class libraries suct
OOMPAA will be very useful for writing more complex molecular simulations. OOMPA/
source code can be found at the web Bitep: //chemccal0.ucsd.edu/ oompaa/ .

ACKNOWLEDGMENTS

This work has been supported in part by the NIH, the NSF, and the MetaCenter Program of the NSF S

computer Centers. G.A.H. is the recipient of NIGMS Postdoctoral Fellowship 1-F32-GM12862-01.

REFERENCES

. J. Agvist and A. Warshel, Simulation of enzyme reactions using valence bond force fields and other h
gquantum/classical approach&hem. Rew3, 2523 (1993).

. P. Bala, P. Grochowski, B. Lesyng, and J. A. McCammon, Quantum-classical molecular dynamics ar
computer implementatioGomput. Cheml9, 155 (1995).

. M. Bhandarkar, R. Brunner, A. Dalke, A. Gursoy, W. Humphrey, N. Krawetz, M. Nelson, J. Phillips, and
Shinozaki, URL http://www.ks.uiuc.edu/Research/namd/Namd2.html, 1998.

4. G. BoochObject-Oriented Analysis and Desiggnd ed. (Addison-Wesley, Reading, MA, 1994).

10.

11.

12.

13.
14.
15.

16.

17.

. R. Car and M. Parrinello, Unified approach for molecular dynamics and density-functional fPlegsyRev.
Lett. 55, 2471 (1985).

. T. W. Clark, R. V. Hanxleden, J. A. McCammon, and L. R. Scott, Parallelization using spatial decomposi
for molecular dynamics, irscalable High Performance Computing Conferen&EE Comput. Soc., Los
Alamitos, CA, 1994), pp. 95-102.

. C. Dellago, P. G. Bolhuis, and D. Chandler, Efficient transition path sampling: Application to Lennard-Jc
cluster rearrangement, Chem. Physl08 9236 (1998).

. R. Elber, A. Roitberg, C. Simmerling, R. Goldstein, H. Li, G. Verkhivker, C. Keasar, J. Zhang, and A. Ulits
MOIL: A program for simulations of macromoleculéSpmput. Phys. Commu81, 159 (1995).

. A. H. Elcock, M. J. Potter, and J. A. McCammon, Application of Poisson—Boltzmann solvation forces

macromolecular simulations, @omputer Simulation of Biomolecular Systemsl. 3, edited by W. F. van

Gunsteren, P. K. Weiner, and A. J. Wilkinson (Kluwer Academic, Dordrecht, 1997, pp. 244-261.

M. J. Field, P. A. Bash, and M. Karplus, A combined quantum mechanical and molecular mechanical potc

for molecular dynamics simulationd, Comput. Cheni1, 700 (1990).

D. Frenkel and B. Smit/nderstanding Molecular Simulation: From Algorithms to Applicati¢Asademic

Press, San Diego, 1996).

M. K. Gilson, M. E. Davis, B. A. Luty, and J. A. McCammon, Computation of electrostatic forces on solva

molecules using the Poisson—Boltzmann equatioRhys. ChenB7, 3591 (1993).

R. Hickey, Callbacks in C++ using template funct@s; Report7, 42 (1995).

M. Holst, URL http://sdna3.ucsd.edu/mholst/codes/codes.html, 1998.

M. Holst and F. Saied, Numerical solution of the nonlinear Poisson—-Boltzmann equation: Developing r

robust and efficient method$, Comput. Cheni6, 337 (1995).

D. Horvath, D. van Belle, G. Lippens, and S. J. Wodak, Development and parametrization of contin

solvent models. I. Models based on the boundary element methGtiem. Physl04, 6679 (1996).

G. A.Huberand S. Kim, Weighted-ensemble Brownian dynamics simulations for protein association reac

Biophys. J70, 97 (1996).

282 HUBER AND McCAMMON

18. G. A. Huber and J. A. McCammon, Weighted-ensemble simulated annealing: Faster optimization on hi
chical energy surfaceBhys. Rev. 55, 4822 (1997).

19. M. NelsonC++ Programmer’s Guide to the Standard Template LibrdBB Books Worldwide, Foster City,
CA, 1995.

20. A. Robison, C++ gets faster for scientific computi@gmput. Physl0, 458 (1996).
21. W. Schroeder, K. Martin, and B. Lorensen, URL http://www.kitware.com/vtk.html, 1998.
22. J. L. Smart, T. J. Marrone, and J. A. McCammarComput. Chen{1997).

23. M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. DongdiPé, The Complete Referen¢elI T
Press, Cambridge, MA, 1997).

24. S. R. Kohn and S. B. Baden, A parallel software infrastructure for structured adaptive mesh methoc
Proceedings, Supercomputing '95, San Diego, 1995.

25. G. van Rossum, URL http://www.python.org, 1998.

26. T. Veldhuizen, Expression templat€s;+ Report7, 26 (1995).

27. T. Veldhuizen, URL http://monet.uwaterloo.ca/blitz/benchmarks/, 1998.
28. T. Veldhuizen, URL http:/monet.uwaterloo.ca/blitz/, 1998.

	INTRODUCTION
	OBJECTS
	FIG. 1.

	TEMPLATES
	LISTS
	POINTER LISTS
	FIG. 2.

	CHEMICAL STRUCTURES
	GROUPS
	FIG. 3.
	FIG. 4.

	VECTORS
	GENERAL VECTORS
	PARAMETERS
	FIG. 5.

	OTHER CORE FEATURES
	ADDITIONS
	PERFORMANCE
	FIG. 6.

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

